Элементарные частицы. Мир элементарных частиц Элементарные частицы и их классификация урок физики

1 слайд

Элементарные частицы Муниципальное бюджетное нетиповое общеобразовательное учреждение "Гимназия №1 имени Тасирова Г.Х. города Белово" Презентация к уроку физики в 11 классе (профильный уровень) Выполнила: Попова И.А., учитель физики Белово, 2012 г.

2 слайд

Цель: Ознакомление с физикой элементарных частиц и систематизация знаний по теме. Развитие абстрактного, экологического и научного мышления учащихся на основе представлений об элементарных частицах и их взаимодействиях

3 слайд

Сколько элементов в таблице Менделеева? Всего лишь 92. Как? Там больше? Верно, но все остальные - искусственно полученные, они в природе не встречаются. Итак - 92 атома. Из них тоже можно составить молекулы, т.е. вещества! Но то, что все вещества состоят из атомов, утверждал еще Демокрит (400 лет до нашей эры). Он был большим путешественником, и его любимым изречением было: "Не существует ничего, кроме атомов и чистого пространства, все остальное - воззрение"

4 слайд

Античастица - частица, имеющая ту же массу и спин, но противоположные значения зарядов всех типов; Хронология физики частиц Для любой элементарной частицы есть своя античастица Дата Фамилия ученого Открытие (гипотеза) 400 лет до н.э. Демокрит Атом НачалоXXв. Томсон Электрон 1910 г. Э. Резерфорд Протон 1928 г. Дирак иАндерсон Открытие позитрона 1928 г. А. Эйнштейн Фотон 1929 г. П. Дирак Предсказание существованияантичастиц 1931 г Паули Открытие нейтрино и антинейтрино 1932 г. Дж. Чедвик Нейтрон 1932 г античастица - позитроне+ 1930 г. В. Паули Предсказание существованиянейтриноn 1935 г. Юкава Открытие мезона

5 слайд

Хронология физики частиц Все эти частицы были нестабильными, т.е. распадались на частицы с меньшими массами, в конечном счете превращаясь в стабильные протон, электрон, фотон и нейтрино (и их античастицы). Перед физиками - теоретиками встала труднейшая задача упорядочить весь обнаруженный "зоопарк" частиц и попытаться свести число фундаментальных частиц к минимуму, доказав, что другие частицы состоят из фундаментальных частиц Дата Открытие (гипотеза) Второй этап 1947 г. Открытиеπ-мезонаpв космических лучах До начала 1960-х гг. Было открыто несколько сотен новых элементарных частиц, имеющих массы в диапазоне от 140 МэВ до 2 ГэВ.

6 слайд

Хронология физики частиц Эта модель к настоящему времени превратилась в стройную теорию всех известных типов взаимодействий частиц. Дата Фамилия ученого Открытие (гипотеза) Третий этап 1962 г. М.Гелл-Манни независимо Дж. Цвейг Предложили модель строения сильно взаимодействующих частиц из фундаментальных частиц - кварков 1995 г. Открытие последнего из ожидавшихся, шестого кварка

7 слайд

Как обнаружить элементарную частицу? Обычно изучают и анализируют следы (траектории или треки), оставленные частицами, по фотографиям

8 слайд

Классификация элементарных частиц Все частицы делятся на два класса: Фермионы, которые составляют вещество; Бозоны, через которые осуществляется взаимодействие.

9 слайд

Классификация элементарных частиц Фермионы подразделяются на лептоны кварки. Кварки участвуют в сильных взаимодействиях, а также в слабых и в электромагнитных.

10 слайд

Кварки Гелл-Манн и Георг Цвейг предложили кварковую модель в 1964 г. Принцип Паули: в одной системе взаимосвязанных частиц никогда не существует хотя бы две частицы с тождественными параметрами, если эти частицы обладают полуцелым спином. М. Гелл-Манн на конференции в 2007 г.

11 слайд

Что такое спин? Спин демонстрирует, что существует пространство состояний, никак не связанное с перемещением частицы в обычном пространстве; Спин (от англ. to spin – крутиться) часто сравнивают с угловым моментом «быстро вращающегося волчка» - это неверно! Спин является внутренней квантовой характеристикой частицы, которая не имеет аналога в классической механике; Спин (от англ. spin - вертеть[-ся], вращение) - собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого

12 слайд

Спины некоторых микрочастиц Спин Ообщееназвание частиц Примеры 0 скалярные частицы π-мезоны,K-мезоны,хиггсовскийбозон, атомы и ядра4He, чётно-чётные ядра, парапозитроний 1/2 спинорные частицы электрон, кварки, протон, нейтрон, атомы и ядра3He 1 векторные частицы фотон, глюон, векторные мезоны, ортопозитроний 3/2 спин-векторные частицы Δ-изобары 2 тензорные частицы гравитон, тензорные мезоны

13 слайд

Кварки Кварки участвуют в сильных взаимодействиях, а также в слабых и в электромагнитных. Заряды кварков дробные - от -1/3e до +2/3e (e - заряд электрона). Кварки в сегодняшней Вселенной существуют только в связанных состояниях - только в составе адронов. Например, протон - uud, нейтрон - udd.

14 слайд

Четыре вида физических взаимодействий гравитационные, электромагнитные, слабые, сильные. Слабое взаимодействие - меняет внутреннюю природу частиц. Сильные взаимодействия - обусловливают различные ядерные реакции, а также возникновение сил, связывающих нейтроны и протоны в ядрах. Ядерные Механизм взаимодействий один: за счет обмена другими частицами - переносчиками взаимодействия.

15 слайд

Электромагнитное взаимодействие: переносчик - фотон. Гравитационное взаимодействие: переносчики - кванты поля тяготения - гравитоны. Слабые взаимодействия: переносчики - векторные бозоны. Переносчики сильных взаимодействий: глюоны (от английского слова glue - клей), с массой покоя равной нулю. Четыре вида физических взаимодействий И фотоны, и гравитоны не имеют массы (массы покоя) и всегда движутся со скоростью света. Существенным отличием переносчиков слабого взаимодействия от фотона и гравитона является их массивность. Взаимодействие Радиус действия Конст.взаимдств. Гравитационное Бесконечно большой 6.10-39 Электромагнитное Бесконечно большой 1/137 Слабое Не превышает 10-16см 10-14 Сильное Не превышает 10-13см 1

16 слайд

17 слайд

Кварки имеют свойство, называемое цветовой заряд. Существуют три вида цветового заряда, условно обозначаемые как синий, зелёный Красный. Каждый цвет имеет дополнение в виде своего антицвета -антисиний, антизелёный и антикрасный. В отличие от кварков, антикварки обладают не цветом, а антицветом, то есть противоположным цветовым зарядом. Свойства кварков: цвет

18 слайд

У кварков имеется два основных типа масс, несовпадающих по величине: масса токового кварка, оцениваемая в процессах со значительной передачей квадрата 4-импульса, и структурная масса (блоковая, конституэнтная масса); включает в себя ещё массу глюонного поля вокруг кварка и оценивается из массы адронов и их кваркового состава. Свойства кварков: масса

19 слайд

Каждый аромат (вид) кварка характеризуется такими квантовыми числами, как изоспин Iz, странность S, очарование C, прелесть (боттомность, красота) B′, истинность (топность) T. Свойства кварков: аромат

20 слайд

Свойства кварков: аромат Символ Название Заряд Масса рус. англ. Первое поколение d нижний down −1/3 ~ 5 МэВ/c² u верхний up +2/3 ~ 3 МэВ/c² Второе поколение s странный strange −1/3 95 ± 25 МэВ/c² c очарованный charm (charmed) +2/3 1,8 ГэВ/c² Третье поколение b прелестный beauty (bottom) −1/3 4,5 ГэВ/c² t истинный truth (top) +2/3 171 ГэВ/c²

21 слайд

22 слайд

23 слайд

Характеристики кварков Характеристика Тип кварка d u s c b t Электрический зарядQ -1/3 +2/3 -1/3 +2/3 -1/3 +2/3 Барионное числоB 1/3 1/3 1/3 1/3 1/3 1/3 СпинJ 1/2 1/2 1/2 1/2 1/2 1/2 ЧетностьP +1 +1 +1 +1 +1 +1 ИзоспинI 1/2 1/2 0 0 0 0 Проекция изоспинаI3 -1/2 +1/2 0 0 0 0 Странностьs 0 0 -1 0 0 0 Charm c 0 0 0 +1 0 0 Bottomness b 0 0 0 0 -1 0 Topness t 0 0 0 0 0 +1 Масса в составе адрона, ГэВ 0.31 0.31 0.51 1.8 5 180 Масса "свободного" кварка, ГэВ ~0.006 ~0.003 0.08-0.15 1.1-1.4 4.1-4.9 174+5

24 слайд

25 слайд

26 слайд

27 слайд

При каких ядерных процессах возникает нейтрино? А. При α - распаде. Б. При β - распаде. В. При излучении γ - квантов. Г. При любых ядерных превращениях

28 слайд

При каких ядерных процессах возникает антинейтрино? А. При α - распаде. Б. При β - распаде. В. При излучении γ - квантов. Г. При любых ядерных превращениях


Примеры явлений, поставивших под сомнение неизменность атомов Электризация тел Линейчатые спектры испускания и поглощения атомов Радиоактивность ЭлектролизФотоэффект Термоэлектронная эмиссия Электрический разряд в газах Вывод: атомы обладают сложным внутренним строением и не являются простейшими неразрушимыми и неизменными частицами




Элементарные частицы (от лат. elementarius – первоначальный, простейший, основной) Частицы, из которых построены атомы считались неспособными ни к каким превращения Элементарными стали считать электроны, протоны и нейтроны Позже фотоны включили в число элементарных частиц Было обнаружено, что свободный нейтрон нестабилен и живет в среднем 15 минут Но нельзя сказать, что нейтрон состоит из этих частиц, они рождаются в момент распада


Элементарными называют частицы, которые на современном уровне развития физики нельзя считать соединением других, более «простых» частиц, существующих в свободном состоянии Элементарная частица в процессе взаимодействия с другими частицами или полями должна вести себя как единое целое Все элементарные частицы превращаются друг в друга, и эти их взаимные превращения – главный факт их существования Неделимость элементарных частиц не означает, что у них отсутствует внутренняя структура


АНТИЧАСТИЦЫ В 1928 году Поль Дирак разработал теорию движения электрона в атоме, учитывающую релятивистские эффекты. Из уравнения получалось, что у электрона должен быть «двойник» - частица такой же массы, но с положительным элементарным зарядом В 1932 году К. Андерсон экспериментально обнаружил в космическом излучении позитроны


АНТИЧАСТИЦЫ У всех элементарных частиц есть античастицы Заряженные частицы существуют парами В 1955 году обнаружен антипротон В 1956 году – антинейтрон Существуют истинно нейтральные частицы – фотон, пи-нуль-мезон, эта- мезон. Они полностью совпадают со своими античастицами


АННИГИЛЯЦИЯ Античастицы оказались способными к особому виду взаимодействия (доказано на опыте Ф. Жолио-Кюри в 1933 г.) Две античастицы при встрече аннигилируют (от лат nihil – ничто), превращаясь в два, редко в три фотона Две античастицы при встрече аннигилируют (от лат nihil – ничто), превращаясь в два, редко в три фотона









Элементарные частицы разделяются на группы по их способностям к различным видам фундаментальных взаимодействий 1. Гравитационное взаимодействие - - описывается законом всемирного тяготения - - действует между любыми телами Вселенной - - играет основную роль только для макроскопических тел больших масс - - носители – гравитоны?


2. Электромагнитное взаимодействие - действует между любыми электрически заряженными частицами и телами, а также фотонами – квантами электромагнитного поля - обеспечивает возможность существования атомов, молекул; определяет свойства твердых тел, жидкостей, газов и плазмы - вызывает деление тяжелых ядер; излучение и поглощение фотонов веществом - носители - фотоны


3. Сильное взаимодействие - это взаимодействие между нуклонами и другими тяжелыми частицами - проявляется на очень коротких расстояниях ~ м - примером является взаимодействие нуклонов ядерными силами - частицы, способные к этому взаимодействию называются адроны - носители – глюоны и мезоны


4. Слабое взаимодействие - в нем участвуют любые элементарные частицы, кроме фотонов - проявляется лишь на очень малых расстояниях ~ м - примером слабого взаимодействия может служить процесс бета- распада нейтрона, распад заряженного пиона - носители – промежуточные бозоны


КВАРКИ Главная идея, высказанная впервые М. Гелл-Манном и Дж. Цвейгом, состоит в том, что все частицы, участвующие в сильных взаимодействиях, построены из более фундаментальных частиц – кварков. Кроме лептонов, фотонов и промежуточных бозонов, все уже открытые частицы являются составными. Кварки в сегодняшней Вселенной существуют только в связанных состояниях - только в составе адронов. Например, протон - uud, нейтрон - udd.


Кварковый состав элементарных частиц Все частицы делятся на два класса: Фермионы, которые составляют вещество; Бозоны, через которые осуществляется взаимодействие. Фермионы подразделяются на лептоны и кварки. В настоящее время на роль истинно элементарных частиц претендуют 6 лептонов и 6 кварков


Резюме При исследовании атомов и элементарных частиц были обнаружены явления, совершенно не подчиняющиеся законам классической физики, и это привело к созданию квантовой физики как физики явлений микромира. Каково же соотношение между классической и квантовой физикой? Существуют ли они как две независимые теории или квантовая физика опровергла и отменила классическую?


Резюме Не произошло ни первого, ни второго. Законы квантовой физики оказались универсальными законами, применимыми не только к системам из элементарных частиц, но и к любым телам макромира. В согласии с принципом соответствия классическая физика оказалась частным случаем квантовой физики, применимым лишь в ограниченной области расстояний и размеров тел макромира.

Урок № 67.

Тема урока : Проблемы элементарных частиц

Цели урока:

Образовательные: познакомить учащихся с понятием - элементарная частица, с классификацией элементарных частиц, обобщить и закрепить знания об фундаментальных видах взаимодействий, формировать научное мировоззрение.

Воспитательные: формировать познавательный интерес к физике, привитие любви и уважения к достижениям науки.

Развивающие: развитие любознательности, умение анализировать, самостоятельно формулировать выводы, развитие речи, мышления.

Оборудование: интерактивная доска (или проектор с экраном).

Тип урока: изучение нового материала.

Вид урока: лекция

Ход урока:

    Организационный этап

    Изучение новой темы.

В природе существуют 4 типа фундаментальных (основных) взаимодействий: гравитационное, электромагнитное, сильное и слабое. По современным представлениям взаимодействие между телами осуществляется через поля, окружающие эти тела. Само поле в квантовой теории понимается как совокупность квантов. Каждый тип взаимодействия имеет своих переносчиков взаимодействия и сводится к поглощению и испусканию частицами соответствующих квантов света.

Взаимодействия могут быть длиннодействующие (проявляются на очень больших расстояниях) и короткодействующие (проявляются а очень малых расстояниях).

    Гравитационное взаимодействие осуществляется посредством обмена гравитонами. Экспериментально они не обнаружены. Согласно закону, открытому в 1687 году великим английским ученым Исааком Ньютоном, все тела независимо от формы и размеров притягиваются друг другу с силой, прямо пропорциональной их массе и обратно пропорциональна квадрату расстояния между ними. Гравитационное взаимодействие всегда приводит к притяжению тел.

    Электромагнитное взаимодействие является длиннодействующим. В отличие от гравитационного взаимодействия, электромагнитное взаимодействие может привести как к притяжению, так и к отталкиванию. Переносчиками электромагнитного взаимодействия являются кванты электромагнитного поля – фотонами. В результате обмена этими частицами и возникает электромагнитное взаимодействие между заряженными телами.

    Сильное взаимодействие – это самые мощное из всех взаимодействий. Оно является короткодействующим, соответствующие силы очень быстро убывают по мере увеличения расстояния между ними. Радиус действия ядерных сил 10 -13 см

    Слабое взаимодействие проявляется на очень малых расстояниях. Радиус действия примерно в 1000 раз меньше, сем у ядерных сил.

Открытие радиоактивности и результаты опытов Резерфорда убедительно показали, что атомы состоят из частиц. Как было установлено, они состоят из электронов, протонов и нейтронов. Первое время частицы, из которых построены атомы, считались неделимыми. Поэтому их назвали элементарными частицами. Представление о «простом» устройстве мира разрушилось, когда в 1932 году открыли античастицу электрона – частицу, которая имела макую же массу, что и электрон, но отличается от него знаком электрического заряда. Эту положительно заряженную частицу назвали позитроном.. согласно современным представлениям у каждой частицы есть античастица. Частица и античастица имеют одинаковою массу, но противоположные знаки всех зарядов. Если античастица совпадает с самой частицей, то такие частицы называют истинно нейтральными, заряд их равен 0. Например, фотон. Частица и античастица при столкновении аннигилируют, то есть исчезают, превращаясь в другие частицы (часто этими частицами является фотон).

Все элементарные частицы (которые нельзя разделить на составные) делятся на 2 группы: фундаментальные (бесструкaтурные частицы, все фундаментальные частицы на данном этапе развития физики считаются бесструктурными, то есть не состоят из других частиц) и адроны (частицы, имеющие сложное строение).

Фундаментальные частицы в свою очередь делятся на лептоны, кварки и переносчики взаимодействий. Адроны делятся на барионы и мезоны. К лептонам относятся электрон, позитрон, мьюон, таон, три типа нейтрино.

К кварками называют частицы, из которых состоят все адроны. Участвуют в сильном взаимодействии.

Согласно современным представлениям, каждое из взаимодействий возникает в результате обмена частицами, называемые переносчиками этого взаимодействия: фотон (частица, переносящая электромагнитное взаимодействие), восемь глюонов (частиц, переносящих сильное взаимодействие), три промежуточных векторных бозона W + , W − и Z 0 , переносящие слабое взаимодействие, гравитон (переносчик гравитационного взаимодействия). Существование гравитонов пока не доказано экспериментально.

Адроны участвуют во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на: барионы, состоящие из трех кварков, и мезоны, состоящие из двух кварков, один из которых является антикварком.

Самое сильное взаимодействие – это взаимодействие между кварками. Протон состоит из 2 u кварков одного d кварка, нейтрон из одного u кварка и 2 d кварков. Оказалось, что на очень малых расстояниях ни один из кварков не замечает соседей, и они ведут себя как свободные, невзаимодействующие между собой частицы. При удалении кварков друг от друга между ними возникает притяжение, которое с увеличением расстояния возрастает. Чтобы разделить адроны на отдельные изолированные кварки потребовалась бы большая энергия. Так как такой энергии нет, то кварки оказываются вечными пленниками и навсегда остаются запертыми внутри адрона. Кварки удерживаются внутри адрона глюонным полем.

III . Закрепление

Вариант 1.

Вариант 2.

3.. Сколько живет нейтрон вне атома ядра? А. 12 мин Б. 15 мин

    Итог урока. На уроке познакомились частицами микромира, выяснили, какие частицы называются элементарными.

    Д/з § 9.3

Название частицы

Масса (в электронных массах)

Электрический заряд

Время жизни (с)

Античастица

Стабилен

Нейтрино электронное

Стабильно

Нейтрино мюонное

Стабильно

Электрон

Стабильн

Пи-мезоны

≈ 10 –10 –10 –8

Эта-нуль-мезон

Стабилен

Лямбда-гиперон

Сигма-гипероны

Кси-гипероны

Омега-минус-гиперон

III . Закрепление

    Назовите основные взаимодействия, которые существую в природе

    Чем отличаются частица и античастица? Что у них общего?

    Какие частицы участвую в гравитационном, электромагнитном, сильном и слабом взаимодействиях?

Вариант 1.

1. Одно из свойств элементарных частиц – способность……… А. превращаться друг в друга Б. самопроизвольно видоизменятся

2.Частицы, которые могут существовать в свободном состоянии неограниченное время, называются….. А. нестабильными Б. стабильными.

3. Какая частица является стабильной? А. протон Б. мезон

4. Частица, являющаяся долгожителем. А. нейтрино Б. нейтрон

5.Нейтрино получается в результате распада….. А. электрона Б. нейтрона

Вариант 2.

    Что является главным фактором существования элементарных частиц?

А. взаимное их проникновение Б. взаимное их превращение.

2. Какая из элементарных частиц не выделена в свободную частицу. А. пион Б. кварки

3. Сколько живет нейтрон вне атома ядра? А. 12 мин Б. 15 мин

    Какая из частиц не является стабильной. А. фотон Б. лептон

    Существуют ли в природе неизменные частицы? А. да Б. нет

Для того чтобы объяснить свойства и поведение элементарных частиц, их приходится наделять, кроме массы, электрического заряда и типа, рядом дополнительных, характерных для них величин (квантовых чисел), о которых мы поговорим ниже.

Элементарные частицы обычно подразделяются на четыре класса . Помимо этих классов, предполагается существование ещё одного класса частиц – гравитонов (квантов гравитационного поля). Экспериментально эти частицы ещё не обнаружены.

Дадим краткую характеристику четырем классам элементарных частиц.

К одному из них относится только одна частица – фотон .

Фотоны (кванты электромагнитного поля) участвуют в электромагнитных взаимодействиях, но не обладают сильным и слабым взаимодействием.

Второй класс образуют лептоны , третий – адроны и, наконец, четвертый – калибровочные бозоны (табл. 2)

Таблица 2

Элементарные частицы

Лептоны

Калибровочные

бозоны

Адроны

n , p ,

гипероны

Барионные

резонансы

Мезонные

резонансы

Лептоны (греч. «лептос » – лёгкий) - частицы , участвующие в электромагнитных и слабых взаимодействиях . К ним относятся частицы, не обладающие сильным взаимодействием: электроны (), мюоны (), таоны (), а также электронные нейтрино (), мюонные нейтрино () и тау-нейтрино (). Все лептоны имеют спины, равные 1/2 , и следовательно являются фермионами . Все лептоны обладают слабым взаимодействием. Те из них, которые имеют электрический заряд (т.е. мюоны и электроны), обладают также и электромагнитным взаимодействием. Нейтрино участвуют только в слабых взаимодействиях.

Адроны (греч. «адрос » – крупный, массивный) - частицы , участвующие в сильных , электромагнитных и слабых взаимодействиях. Сегодня известно свыше сотни адронов и их подразделяют на барионы и мезоны .

Барионы - адроны , состоящие из трёх кварков (qqq ) и имеющие барионное число B = 1.

Класс барионов объединяет в себе нуклоны (p , n ) и нестабильные частицы с массой большей массы нуклонов, получившие название гиперонов (). Все гипероны обладают сильным взаимодействием, и следовательно активно взаимодействуют с атомными ядрами. Спин всех барионов равен 1/2 , так что барионы являются фермионами . За исключением протона, все барионы нестабильны. При распаде бариона, наряду с другими частицами, обязательно образуется барион. Эта закономерность является одним из проявлений закона сохранения барионного заряда .

Мезоны - адроны , состоящие из кварка и антикварка () и имеющие барионное число B = 0.

Мезоны – сильно взаимодействующие нестабильные частицы, не несущие так называемого барионного заряда. К их числу принадлежат -мезоны или пионы (), K-мезоны, или каоны (), и -мезоны. Массы и мезонов одинакова и равна 273,1 , 264,1 время жизни, соответственно, и с. Масса К-мезонов составляет 970 . Время жизни К-мезонов имеет величину порядка с. Масса эта-мезонов 1074 , время жизни порядка с. В отличие от лептонов, мезоны обладают не только слабым (и если они заряжены, электромагнитным), но также и сильным взаимодействием, проявляющимся при взаимодействии их между собой, а также при взаимодействии между мезонами и барионами. Спин всех мезонов равен нулю, так что они являются бозонами .

Калибровочные бозоны - частицы , осуществляющие взаимодействие между фундаментальными фермионами (кварками и лептонами). Это частицы W + , W – , Z 0 и восемь типов глюонов g. Сюда же можно отнести и фотон γ.

Свойства элементарных частиц

Каждая частица описывается набором физических величин – квантовых чисел, определяющих её свойства. Наиболее часто употребляемые характеристики частиц следующие.

Масса частицы , m . Массы частиц меняются в широких пределах от 0 (фотон) до 90 ГэВ (Z -бозон). Z -бозон - наиболее тяжелая из известных частиц. Однако могут существовать и более тяжелые частицы. Массы адронов зависят от типов входящих в их состав кварков, а также от их спиновых состояний.

Время жизни , τ. В зависимости от времени жизни частицы делятся на стабильные частицы , имеющие относительно большое время жизни, и нестабильные .

К стабильным частицам относят частицы, распадающиеся по слабому или электромагнитному взаимодействию. Деление частиц на стабильные и нестабильные условно. Поэтому к стабильным частицам принадлежат такие частицы, как электрон, протон, для которых в настоящее время распады не обнаружены, так и π 0 -мезон, имеющий время жизни τ = 0.8×10 - 16 с.

К нестабильным частицам относят частицы, распадающиеся в результате сильного взаимодействия. Их обычно называют резонансами . Характерное время жизни резонансов - 10 - 23 -10 - 24 с.

Спин J . Величина спина измеряется в единицах ħ и может принимать 0, полуцелые и целые значения. Например, спин π-, К-мезонов равен 0. Спин электрона, мюона равен 1/2. Спин фотона равен 1. Существуют частицы и с большим значением спина. Частицы с полуцелым спином подчиняются статистике Ферми-Дирака, с целым спином - Бозе–Эйнштейна.

Электрический заряд q . Электрический заряд является целой кратной величиной от е = 1,6×10 - 19 Кл, называемой элементарным электрическим зарядом. Частицы могут иметь заряды 0, ±1, ±2.

Внутренняя четность Р . Квантовое число Р характеризует свойство симметрии волновой функции относительно пространственных отражений. Квантовое число Р имеет значение +1, -1.

Наряду с общими для всех частиц характеристиками, используют также квантовые числа, которые приписывают только отдельным группам частиц.

Квантовые числа : барионное число В , странность s , очарование (charm ) с , красота (bottomness или beauty ) b , верхний (topness ) t , изотопический спин I приписывают только сильновзаимодействующим частицам - адронам .

Лептонные числа L e , L μ , L τ . Лептонные числа приписывают частицам, образующим группу лептонов. Лептоны e , μ и τ участвуют только в электромагнитных и слабых взаимодействиях. Лептоны ν e , n μ и n τ участвуют только в слабых взаимодействиях. Лептонные числа имеют значения L e , L μ , L τ = 0, +1, -1. Например, e - , электронное нейтрино n e имеют L e = +l; , имеют L e = - l. Все адроны имеют .

Барионное число В . Барионное число имеет значение В = 0, +1, -1. Барионы, например, n , р , Λ, Σ, нуклонные резонансы имеют барионное число В = +1. Мезоны, мезонные резонансы имеют В = 0, антибарионы имеют В = -1.

Странность s . Квантовое число s может принимать значения -3, -2, -1, 0, +1, +2, +3 и определяется кварковым составом адронов. Например, гипероны Λ, Σ имеют s = -l; K + - , K – - мезоны имеют s = + l.

Charm с . Квантовое число с с = 0, +1 и -1. Например, барион Λ + имеет с = +1.

Bottomness b . Квантовое число b может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие b = 0, +1, -1. Например, В + -мезон имеет b = +1.

Topness t . Квантовое число t может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружено всего одно состояние с t = +1.

Изоспин I . Сильновзаимодействующие частицы можно разбить на группы частиц, обладающих схожими свойствами (одинаковое значение спина, чётности, барионного числа, странности и др. квантовых чисел, сохраняющихся в сильных взаимодействиях) - изотопические мультиплеты . Величина изоспина I определяет число частиц, входящих в один изотопический мультиплет, n и р составляет изотопический дуплет I = 1/2; Σ + , Σ - , Σ 0 , входят в состав изотопического триплета I = 1, Λ - изотопический синглет I = 0, число частиц, входящих в один изотопический мультиплет , 2I + 1.

G - четность - это квантовое число, соответствующее симметрии относительно одновременной операции зарядового сопряжения с и изменения знака третьего компонента I изоспина. G- четность сохраняется только в сильных взаимодействиях.

>> Три этапа в развитии физики элементарных частиц

Глава 14. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

В этой главе речь пойдет о частицах, которые нельзя разделить и из которых построена вся материя.

§ 114. ТРИ ЭТАПА В РАЗВИТИИ ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Вы уже более или менее знакомы с электроном, фотоном , протоном и нейтроном. Но что же такое элементарная частица?

Этап первый. От электрона до позитрона: 1897-1932 гг. (Элементарные частицы - «атомы Демокрита» на более глубоком уровне.)

Когда греческий физик Демокрит назвал простейшие нерасчленимые далее частицы атомами (слово атом, напомним, означает «неделимый»), то ему, вероятно, все представлялось в принципе не очень сложным. Различные предметы, растения, животные состоят из неделимых, неизменных частиц. Превращения, наблюдаемые в мире, - это простая перестановка атомов. Все в мире течет, все изменяется, кроме самих атомов, которые остаются неизменными.

Но в конце XIX в. было открыто сложное строение атомов и был выделен электрон как составная часть атома. Затем, уже в XX в., были открыты протон и нейтрон - частицы, входяпцие в состав атомного ядра. Поначалу на все эти частицы смотрели точно так, как Демокрит смотрел на атомы: их считали неделимыми и неизменными первоначальными сущностями, основными кирпичиками мироздания.

Этап второй. От позитрона до кварков: 1932-1964 гг. (Все элементарные частицы превращаются друг в друга.) Ситуация привлекательной ясности длилась недолго. Все оказалось намного сложнее: как выяснилось, неизменных частиц нет совсем. В самом слове элементарная заключается двоякий смысл. С одной стороны, элементарный - это само собой разумеющийся, прос:тейший. С другой стороны, под элементарным понимается нечто фуидаментальное, лежащее в основе вещей (именно в этом смысле сейчас и называют субатомные частицы элементарными).

Считать известные сейчас элементарные частицы подобными неизменным атомам Демокрита мешает следующий простой факт. Ни одна из частиц не бессмертна. Большинствo частиц, называемых сейчас элементарными, не может прожить более двух миллионных долей секунды, даже в отсутствие какого-либо воздействия извне. Свободный нейтрон (нейтрон, находящийся вне атомного ядра) живет в среднем 15 мин.

Лишь частицы фотон, электрон, протон и нейтрино сохраняли бы свою неизменность, если бы каждая из них была одна в целом мире (нейтрино лишено электрического заряда, и его масса покоя, по-видимому, равна нулю).

Но у электронов и протонов имеются опаснейшие собратья - позитроны и антипротоны, при столкновении с которыми происходит взаимное уничтожение этих частиц и образование новых.

Фотон, испущенный настольной лампой, живет не более 10 -8 с. Это то время, которое ему нужно, чтобы достичь страницы книги и поглотиться бумагой.

Лишь нейтрино почти бессмертны, так как они чрезвычайно слабо взаимодействуют с другими частицами. Однако и нейтрино гибнут при столкновении с другими частицами, хотя такие столкновения случаются крайне редко.

Итак, в вечном стремлении к отысканию неизменного в нашем изменчивом мире ученые оказались не на «гранитном основании», а на «зыбком песке».

Все элементарные частицы превращаются друг в друга, и эти взаимные превращения - главный факт их существования.

Превращения элементарных частиц ученые наблюдали при столкновениях частиц высоких энергий. Представления о неизменности элементарных частиц оказались несостоятельными. Но идея об их неразложимости сохранилась. Элементарные частицы уже далее неделимы, но они неисчерпаемы по своим свойствам. Вот что заставляет так думать.

Пусть у нас возникло естественное желание исследовать, состоит ли, например, электрон из каких-либо других субэлементарных частиц. Что нужно сделать для того, чтобы попытаться расчленить электрон ? Можно придумать только один способ. Это тот же способ, к которому прибегает ребенок, если он хочет узнать, что находится внутри пластмассовой игрушки, - сильный удар.

Разумеется, по электрону нельзя ударить молотком. Для этого можно воспользоваться другим электроном, летящим с огромной скоростью, или какой-либо иной движущейся с большой скоростью элементарной частицей.

Современные ускорители сообщают заряженным частицам скорости, очень близкие к скорости света.

Что же происходит при столкновении частиц сверхвысокой энергии? Они отнюдь не дробятся на нечто такое, что можно было бы назвать их составными частями. Нет, они рождают новые частицы из числа тех, которые уже фигурируют в списке элементарных частиц. Чем больше энергия сталкивающихся частиц, тем большее количество частиц рождается. При этом возможно появление частиц с большей массой, чем сталкивающиеся частицы. Главное, что надо отметить, -это то, что всегда выполняется закон сохранения энергии.

На рисунке 14.1 вы видите результат столкновения ядра углерода , имевшего энергию 60 млрд эВ (жирная верхняя линия), с ядром серебра фотоэмульсии. Ядро раскалывается на осколки, разлетающ,иеся в разные стороны. Одновременно рождается много новых элементарных частиц - пионов. Подобные реакции при столкновениях релятивистских ядер, полученных в ускорителе, впервые в мире осуществлены в лаборатории высоких энергий Объединенного института ядерных исследований в г. Дубне под руководством академика А. М. Балдина. Лишенные электронной оболочки ядра были получены путем ионизации атомов углерода лазерным лучом.

Возможно, конечно, что при столкновениях частиц с недоступной пока нам энергией будут рождаться и какие-то новые, еще неизвестные частицы. Но сути дела это не изменит. Рождаемые при столкновениях новые частицы никак нельзя рассматривать как составные части частиц-«родителей». Ведь «дочерние» частицы, если их ускорить, могут, не изменив своей природы , породить, в свою очередь, при столкновениях сразу несколько таких же в точности частиц, какими были их «родители», да еще и множество других частиц.

Итак, по современным представлениям, элементарные частицы - это первичные, неразложимые далее частицы, из которых построена вся материя. Однако неделимость элементарных частиц не означает, что у них отсутствует внутренняя структура.

Этап третий. От гипотезы о кварках (1964 г.) до наших дней. (Большинство элементарных частиц имеет сложную структуру.) В 60-е гг. возникли сомнения в том, что все частицы, называемые сейчас элементарными, полностью оправдывают это название. Основание для сомнений простое: этих частиц очень много.

Открытие новой элементарной частицы всегда составляло и сейчас составляет выдающийся триумф науки. Но уже довольно давно к каждому очередному триумфу начала примешиваться доля беспокойства. Триумфы стали следовать буквально друг за другом.

Была открыта группа так называемых странных частиц: К-мезонов и гиперонов с массами, превышающими массу нуклонов. В 70-е гг. к ним прибавилась большая группа частиц с еще большими массами, названных очарованными.

Кроме того, были открыты короткоживущие частицы с временем жизни порядка 10 -22 -10 -23 с. Эти частицы были названы резонансами, и их число перевалило за двести.

Вот тогда-то (в 1964 г.) М. Гелл-Манном и Дж. Цвейгом была предложена модель, согласно которой все частицы, участвующие в сильных (ядерных) взаимодействиях, - адроны - построены из более фундаментальных (или первичных) частиц - кварков.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки